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The protection of the surface of bodies from high-temperature fluid flows is a real 
problem in modern technology. The aerodynamic protection is effected with the help of gas 
curtain. One of the principal means of organizing such a curtain is to blow cold fluid 
through slots at the initial section of the surface being protected [i]. The computational 
problem consists in the determination of the surface-temperature distribution in the region 
of the gas curtain. The existing methods to compute wall-jet curtains are in three principal 
directions depending on the physical model being used [2]: free turbulent jet model; two- 
layer scheme with laws on semibounded turbulent jets; flow in a boundary layer with wall-jet 
curtains determined by wall turbulence. The simplest method appeared to be based on the use 
of integral relations for the boundary layer and asymptotic conditions when equalization 
of temperature inside the boundary layer [3] takes place at x § ~ due to turbulent mixing. 
Under these conditions, there is a limiting relation between the momentum and energy thick- 
nesses which cannot fully reflect the influence of initial conditions and the previous history 
of the flow. Expressions for the effect of cooling are developed using interpolations of 
the type q = (i + na )b where a and b are constants, is the value of the efficiency UX_~ , ~X_~O o , 

obtained on the basis of the laws of boundary-layer growth away from the location of blowing. 
The model for the wall jet takes into consideration the behavior of mixing processes near the 
lip of the nozzle [4]. Studies on turbulent boundary layer in wall jets have been carried 
out in many theoretical and experimental works [5-7]. The majority of theoretical studies is 
based on the simultaneous solution of the equations for turbulent jets and boundary layer 
growing on a flat plate, the difference being in the manner of specifying velocity profiles 
and skin-friction. In studying flows near curvilinear surfaces, disagreement has been noticed 
between experimental data and theoretical results computed from Karman integral relations 
which do not take into account the surface curvature in an explicit form. In [8, 9], it has 
been observed that the effect of surface curvature on the semibounded jet and the efficiency 
of wall-jet curtain mainly depend on active or conservative role of centrifugal body forces. 
In the present work, a method is developed to compute the flow and heat transfer on an adia- 
batic curvilinear surface, based on the asymptotic continuation of the method of integral 
relations for turbulent wall jets away from the location of blowing. The above-mentioned 
limiting cases correspond to conditions for the reorganization of nonmonotonous velocity 
profile which is present near the lip of the nozzle, in the flow that is characteristic of 
a developed boundary layer [7]. Such an approach makes it possible to develop a computational 
method for the wall-jet curtain with initial conditions for outflow while computational 
expressions for the efficiency of film cooling are developed on the basis of interpolation 
formulas. 

i. Problem Formulation. Adiabatic Curvilinear Surface with Gas Curtain. Consider a 
quasiisothermal turbulent wall jet. It is assumed that the physical characteristics of the 
fluid are constant in the given temperature range. The basic flow has a velocity u 0 and 
temperature T o . The same fluid is blown through a slot of height s with a mean velocity u s 
and temperature T s at the exit section. In the initial segment 0 < x < x s the curvilinear 
surface is in contact only with the fluid curtain and, hence, has a temperature T w = T s 
(Fig. i) at all points. The thermal boundary layer begins from the section x = x s as a 
result of mixing of the fluid curtain with the basic flow. Equations of quasisteady turbu- 
lent, incompressible boundary layer on the curvilinear surface with a constant curvature 
(neglecting normal turbulent stress components) take the form [i0] 
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o ~ + ~ +  ~+kv (1.1) 
Ou 0~ kuv t t 8p i OT 2k~ 

u$-fz+v-~S+i-'-'~-~= i+kypOz+~+(i+kV)p; (1.2) 
k ~ , o p  o ( u ) .  

t + W = 7 ~ '  ~= - p <~+'v'> + ~(i + kv)~ ~ , (1.3) 

u ~ + ( l  +ky) v - ~ v = 7  ( i + k g ) ~ + 2 k q .  (1 .4)  

Here u and v are velocity comonents in the x and y directions, respectively; the coordinate 
x is measured from the nozzle section and is directed along the tangent to the surfacg; y, 
normal to it; p, pressure; ~ = T - To, excess temperature; T, temperature in the boundary 
layer; T w and T0, temperatures of the wall and the fluid away from the curvilinear surface; 
and q, expressions for the total shear stress and heat flux; k = l/R, surface curvature; R, 
radius of curvature; p, density. The only component of the vorticity in two-dimensional flow 
is its projection along z, perpendicular to the plane of the flow ~z = -~u/Sy - ku/(l + ky). 
The boundary conditions are zero vorticity in the main flow, and also the no-slip and adia- 
batic conditions at the wall 

u = v = O , T  = Tad,w~r y = 0 ,  ( 1 . 5 )  

uo(l + k y )  = uo,w, T = T  O ~r y - o - ~ ,  

where u0(x, y) can be considered [he velocity distribution in the potential flow past the 
curvilinear surface; U0,w(X) is the value of velocity u 0 at the wall (see Fig. i); Tad.w is 

the wall temperature under adiabatic conditions. 

The jet flow field can be split into the primary segment with two characteristic regions 
based on the jet width 5, ~m within which velocity and temperature profiles are linear and an 
initial segment with a core of constant velocities and temperatures [6] (see Fig. I). The 
"docking" method is based on approximating the finite thickness boundary layer and momentum 
and energy integral relations written for the wall layer with velocity u m at its outer edge, 
and the jet region of the curtain [i0]. The following system of integral relations are 
obtained by integrating the equations of motion and heat transfer (1.2)-(1.4) from the 
surface (y = 0) to the point with the ordinate y = 5m, 5 using the equation of continuity 
(1.1) 

8 "u2dY dg- - (u~  - u ~  
~5 m Om 6m . o 

5 5 6m 
d 

5 m 0 g 

2 d6 6 2 dSmSm " duo w[ 52--5~m] 
+ u o , ~ : - u . ~  d~ R u o , ~ [ ( 6 - ~ m )  ~ j=O;  

(1.7) 
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( 1 . 9 )  

The integral relation (1.6) represents the change in excess energy flux of the wall jet on 
the curvilinear surface, depending on the strength of turbulent shear stresses, body (centri- 
fugal) forces, and viscous skin friction. It was obtained by multiplying the equation of 
motion (1.2) and the function uh and the subsequent integration across the thickness of the 
wall jet, where h = 1 + y/R is the Lam4 constant [i0]. Expression (1.9) characterizes the 
conservation of excess enthalpy in the wall jet in the presence of an adiabatic wall. In 
what follows it will be assumed that the hydrodynamic and thermal boundary layers are 
approximately equal (6 t = 6) [4]. 

The method of integral relations [5] used to solve the system (1.6)-(1.9) assumes the 
shear stress relation and the semiempirical approach to determine the turbulent skin friction 

t~ /pu~  = A (u~6~/~) -~ ,  �9 = kp (a --  am) (u~ --  Uo) ~ ,  ( 1. 10 ) 

(A = 0 . 0 0 8 3 3 ,  m = 2 / 1 3 ,  k = 0 . 0 1 1 )  and v e l o c i t y  p r o f i l e s  in  t h e  w a l l  and j e t  r e g i o n s  e x p r e s s e d  
in  t h e  f o r m  

u/u~ I p (r r = u/a,~ for 0 < u~ 6~, 
=[Q(~), ~=(y-6~)/(8-am) for 6~<y~a. 

(i.ii) 

The surface curvature and the velocity of the main flow weakly affect the relative jet 
velocity profile in the wall as well as in the jet regions [ii], and hence the "one-twelfth" 
law P( ) = (y/6m) ~/12 and the Schlichting profile Q(~) = (i - ~3/z)2 [6] are used in the present 
work. The "depth" of cooling of the adiabatic wall by the gas curtain is determined by the 
cooling efficiency n = (To - Tad.w)/(T0 - Ts). Using the equation for the conservation of 
excess enthalpy (1.9), the expression for velocity profiles (i.ii), and the condition for linear 
variation in temperature inside the boundary layer on the adiabatic surface (true, strictly 
speaking, away from the region of blowing as x § ~), the cooling efficiency nx-~ can be 
expressed in the form [4] 

o -  

where urn = um/ua; ~m = 6m/s; 5 = 6/s; m = uJu o �9 Away f rom t h e  l o c a t i o n  o f  b l o w i n g  t h e  maximum 

excess velocity of the jet ~ = l~m- u01 tends to zero which corresponds to the transformation 
of the system (1.6)-(1.8) to the system of integral relations that is true, in general, only 
when x + ~. Such an approach at high Reynolds numbers Re s = UsS/~ in the system (1.6)-(1.9) 
makes it possible to obtain limiting mixing laws for the outer (jet) region of the wall jet. 
The simultaneous use of two limiting transformations (Re s + ~, x + ~) assumes the satisfaction 
of the condition Re x ~ ~. 

2. Gas Curtain on Adiabatic Flat Plate (R = ~, u 0 = const). Limiting Mixin~ Laws. 
Expressions for the determination of the extent of the initial segment x s and the jet thickness 
at the end of the initial segment are given in [4]. Integral relations (1.6)-(1.8) in the 
main segment for the inner and outer regions of the wall jet are transformed to the following 
form using velocity profiles P(~) and Q(~), skin friction relation, and Prandtl's equation 
(1.10) 

a (u~6~) = 0; (2.1) d [ ( a l u  o + a2e)l] + ec177 

796 



Here 

d (um6m) (u,,, + Uo) + 2k%e a = O; + + z] + 

d} dr ~3 
r ~ + cat ~ = ~ car-~/~atz. 

t = u m / u , ;  r = ( u , ~ 6 ~ ) / ( u ~ 5 = , ~ ) ;  l = ( u ~ -  %)((~ - 6m); 

( 2 . 2 )  

( 2 . 3 )  

1 1 

~ =  j'o~(~)d5 (~.= t, 2, 3); c~=  j 'P!(~l)&q ( ] =  l, 2); 
o o 

% = .f [O,].2 d I; c a = t - - c j / q ;  ~ = x/x~. 
o 

E x p r e s s i o n s  f o r  t h e  o u t e r  r e g i o n  ( 2 . 1 )  and  ( 2 . 2 )  a s  a § 0 and  f i x e d  p a r a m e t e r  m = Us/U 0 c a n  
be  s i m p l i f i e d  by  l i n e a r i z a t i o n  ( n e g l e c t i n g  p r o d u c t s  o f  t h e  o r d e r  O(a 2) and  h i g h e r )  and  c o n -  
s i d e r i n g  t h a t  t h e  t h i c k n e s s  o f  t h e  i n n e r  r e g i o n  5 m i s  much l e s s  t h a n  t h e  j e t  t h i c k n e s s  5: 

d [ l ( a , u  ~ q- a2e)]---~O, b [ / ( 2 a l u o  2 + 3a~Uoe)]"-~ O" (2.4) 
dx 

This corresponds to the conservation of excess momentum and kinetic energy for the outer 
layer of the semibounded jet 

6 6 

S j" dx u (u - -  %) dy ---* O, aTx 
6m dm 

as ~ + 0 and a fixed value of the blowing parameter m. The solution to the linearized system 
(2.4) indicates an absence of mixing in the main region of the wall jet when the thickness of 
the outer edge remains unchanged and equal to its thickness at the end of the initial segment 
of the jet 

u~ = u, (s = eo), 6 - -  6~ = (6 - -  8m),. ( 2 . 6 )  

The tendency to stabilize the growth of the outer region of the wall jet (2.6) is confirmed 
by experimental data [6] and, closer the velocities of the mixing flows, more accurately is 
thus fulfilled. For the wall boundary layer the momentum equation (2.3) along with (2.6) is 
transformed to the form 

dr 13 -2/ia ( 2 . 7 )  
d'--~ = ~ r  

with initial conditions r = i at ~ : 1 and the solution ~m = Ym,sr where ~m,s : 6m,s/S 
is the nondimensional wall boundary layer thickness at the end of the initial segment. 

The interpolation formula for the efficiency of the gas curtain in the form of a power 
series N = (I + I/Nx~) -I is used to eliminate the singularity at x = 0 which is present in 
the expression for the efficiency away from the location of blowing ~x+~, and in the limit as 
x + ~ transforms to the expression (1.12). The inner and outer region thicknesses in (1.12) 
are determined from (2.6) and the solution to the equation (2.7). The use of the solutions 
to the system of linearized integral relations for the wall jet is possible from a comparison 
of the computed results for cooling efficiency with experimental data [2] (Fig. 2). Compu- 
tations (carried out at Re s = 6000 and m = 1.5) showed that the present theory gives good 

agreement with experiment in the range I< ~ Re7~ (curve i). Computations based on 
$ 

the model of a developing turbulent wall boundary layer [2] give somewhat higher values of 
efficiency (curve 2). Unlike other methods to compute the efficiency of gas curtain [2] 
the present approach makes it possible to independently study the characteristics of the 
interaction of the wall layer and the outer mixing region of the curtain with the main flow 
in the initial and main segments and more fully take into consideration the influence of 
previous history of the flow on the temperature distribution in the flow past the adiabatic 
flat plate. 
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3. Gas Curtain on Adiabatic Flat Plate with Pressure Gradient in the Main Flow (R = 
=, u~ = ug(x)). Limiting Mixing Laws. There is a fairly large amount of experimental data 
available in the literature today on the effect of positive and negative pressure gradients 
of the main flow on the efficiency of a gas curtain [2, 3] but there is no reliable compu- 
tational method. Considering the same gas curtain model, viz., turbulent wall jet, the 
computational method for turbulent jets in flows with pressure gradient within the main 
segment is developed on the basis of a polynomial approximtion of the turbulent shear stress 
profiles [i0] which requires a numerical solution of the resulting equations of motion. 
The method of integral relations is used here to find the solution using quadratures for the 
initial and main segments. There is a potential core in the initial segment (see Fig. i), 
characterized by a constant total pressure which, according to the Bernoulli equation, leads 
to the condition of constant difference in the squares of velocities of the source and the 
main flow at any point in the initial segment [5]. Using velocity profiles (I.ii), Eqs. 
(1.6)-(1.8) are integrated in a closed form and make it possible to obtain expressions for 
characteristic wall jet thickness in the initial segment 

I! ] b 2 "b~ . (3.1) Y 2 = 5 - - 5 1 =  ba dx dx e x p  dx b~ e x p  

5m = 0 A 8 8  Re72/15 ta|}usC ~ -  7/= (x) dx] la/l~:-'~/6us , ( 3 . 2 )  

where 61 is the ordinate of the outer edge of the potential core of the wall jet (see Fig. I); 

b~ = (~, Uo)% + ( u ~ -  ~' - - -  Uo) (2u o u,)a~ - -  Uo(U, uo)al;  

d 2 . b2 = ~ [(u,  - -  Uo) 3 aa + (u~ - -  Uo) 2 (u o - -  2u.~) a~ + u.~ (u,  - -  uo) a l l ,  

ba = - -2k(u~-  uo)aaa; u~ (x )  = u~/U~,o. 

Here the reference velocity for the blowing velocity is the value at the nozzle section Us, 0. 
The length of the initial segment is found from the condition 61 = 6 m = 5m, s that leads to 
the integral equation for the determination of x s. It is necessary to mention that (3.1) is 
the universal expression for the free as well as for the wall jet, and there is no need to 
solve the integral equation of Volterra's second kind [5]. Numerical computations were carried 
out for a given variation of the main flow in the form of a_linear relation u0(x) = u0,0(l + 
yx), where u0, 0 is the velocity of the main flow at inlet, x = x/s. Positive value of the 
parameters X corresponds to a negative pressure gradient and the negative sign indicates 
positive gradient. An acceleration in the main flow is shown in Fig. 3 to lead to an in- 
crease in the initial segment whereas diffusion leads to a decrease. Curves 1-3 correspond 
to nondimensional velocity uo, , = u,,o/u~, n = 1.25; ; 1.5; 1.75. Similar qualitative behavior 
of the length of the initial segment Xs, depending on the streamwise pressure gradient, has 
been obtained for free jets [5]. Computations also showed an increase in wall boundary layer 
thickness at the end of the initial segment with an increase in the parameter X (Fig. 4) which 
is also true for the thickness of the outer region (Fig. 5). The notations for curves in 
Figs. 4 and 5 are the same as in Fig. 3. 

Using asymptotic approach to solve the integral relations (1.6) and (1.7) in the main seg- 
ment, we get for the wall jet 
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- ;  f a u(z~ ~ - -  u~) dy-+ O, ~ u (u - -  uo) dy + ~ (u - -  Uo) d y - ~  0 ( 3 . 3 )  
dx 

6m ~m 6m 

as  e ~ 0 and f i x e d  m. The s o l u t i o n  t o  t h e  s y s t e m  ( 3 . 3 )  i s  e x p r e s s e d  i n  t h e  form o f  l i m i t i n g  
m i x i n g  l aws  t h a t  d e t e r m i n e  t h e  b e h a v i o r  o f  t h e  m i x i n g  l a y e r  o f  t h e  o u t e r  r e g i o n  o f  t h e  t u r b u l e n t  

w a l l  j e t :  

2alUo, o + 3ao8 s ~o,o (3.~) 
= 6 -  = �9 

Linearized momentum equation for the inner region similar to (2.7) is brought to the form 

1 

dr_ t3 t tr~2/ls, j'-7/2 - dx- 

o 

w i t h  t h e  i n i t i a l  c o n d i t i o n  r = 1 a t  ~ = 1 and t h e  s o l u t i o n  

(3.5) 

Computations for the wall jet curtain using (3.4) and (3.5) and the rational interpolation 
formula used in p. 2 for the determination of efficient jet cooling showed that the presence 
of velocity gradient in the main flew does not practically affect the efficiency of the post- 
gradient cooling in the main segment. 

4. Gas Curtain0n Curv.i!inear Cylindrical Surface...(R =const, u0 = u0(x)). Asymptotic 
Mixing Laws. The streamline curvature in the shear plane leads to changes in the structure 
of turbulence in the boundary layer: turbulence decreases near the convex surface (conserva- 
tive effect of centrifugal forces) and increases in the concave region [7]. The corresponding 
change in momentum and heat is included either through the introduction of the Monin-Obukhov 
coefficient in the expression for the mixing length or the introduction of the additional rela- 
tive Kutateladze - Leont'ev function [3, I0]. The consideration of streamwise surface curva- 
ture is especially significant in the computation of wall jets on curvilinear surfaces and the 
computation could be carried out on the basis of Karman momentum integral relations [8]. 
The analysis of terms on the right-hand side of Eqs. (1.6)-(1.8) is carried out using asympto- 
tic mixing theory for the case u 0 = const. The strength of surface shear stresses and the 
integrals that take into account surface curvature in an explicit form becomes negligibly 
small: 

6 5 

~ ~ ( 6 - - 6 ~ ) ~ 0 ,  ~ th2 ~ ( u h ) d y ~ O ( e 3 ) ~ O ,  ~ , f  u d v ~ u o , w ~ - ~ x  
6 m 6m 
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t ~ O J ' u ~ d g 1 3 d  T u~- ~- -R-uo,~(a-a~)~o (4.1) 
~m 6 

a s  Re x + ~ a n d  f i x e d  m. 

R e s u l t s  f o r  t h e  o u t e r  f l o w  o f  t h e  w a l l  j e t  on a f l a t  p l a t e  ( 2 . 6 ) ,  h a v i n g  c o n s t a n t  o u t e r  
layer thickness under asNptotic conditions, are used in order to estimate the last two 
integrals in (4.1). ~e use of Eq. (2.6) for the estimation does not lead to large errors 
since it involves terms 0[(5/R)2]. When ~m << ~ the expressions for the outer layer of the 
wall jet on curvilinear surface are written in the form (2.5) which makes it possible to 
use Eq. (2.6) to determine the maximum velocity and thickness of the outer layer. The 
determination of wall boundary-layer thickness, within the framework of as~ptotic approxi- 
mation, reduces to the integration of the equation of the type 

5m 5 m ~m 

d ~ 2 d t" , d6m ~m ~m d ~ 
d~ u dy--  um--d~- z , udg +um dz R U~ T ~ udg + rw/p = 0,; 

0 0 0 

which, as in the case of (2.7) is reduced to the form 

13 r_Z/18. ( 4  2 )  
=T5 

According to the method for an analytical solution, suggested in [8], the solution to (4.2) 
with initial conditions r = i at ~ = i will be the expression 

r-= ~---g-  t - - T f U  o 1 8 ~' t - - T g  ~ JJ ' 

where u 0 = U0,w/S. 

The influence of surface curvature is determined by the characteristics of the develop- 
ment of wall boundary layer on the curvilinear surface and the linear formulation of the 
problem does not permit the consideration of the effect of body forces in (4.1) on the turbu- 
lence characteristics of the outer layer of the wall jet. Expression (4.3) shows that the 
nature of the effect of surface curvature depends on the difference in circular brackets. 
If u0, w < Um, i.e., blowing rate is greater than the main flow velocity, the thickness of 
the wall boundary layer on the convex surface is greater than that on the concave surface. 
Here the cooling efficiency of the gas curtain, according to (1.12), should be less when 
m > i on the convex surface and more on the concave surface compared to a flat plate. Such 
a difference in the dynamic effect of centrifugal forces is explained by their stabilizing 
effects on concave and destabilizing effects on convex surfaces [9]. When the blowing 
coefficient is less than one (u0, w > Um), the surface curvature has an opposite effect: 
cooling efficiency of the gas curtain is higher on the convex surface and lower on the con- 
cave. Thus, in order to improve cooling efficiency with gas curtain on a curvilinear surface 
it is necessary to blow on the convex surface with a velocity less than that of the main 
stream; for concave surface the blowing coefficient should be greater than one. 

The above-described technique is the basis of hydrodynamic control by efficient wall cur- 
tain on a curvilinear surface. Computations of wall-jet cooling efficiency carried out using 
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Eqs. (2.6) and (4.3) and interpolation formulas (p. 2 and 3) showed satisfactory agreement 
with experimental data [9]. In Figs. 6a, b dark points denote convex surface and light 
points denote concave surface. It is worth noting that computations at m = 1.19 (Fig. 6a) 
agree with experiments over a wider range of variation in the parameter x/(ms) than when 
m = 0.61 (Fig. 6b), from 30 to i00 in the first case and from 30 to 60 in the second case. 
This is because when m > 1 the curtain retains the characteristics of ajet over a larger 
distance from the nozzle lip and, hence, is better described by theory based on jets. In 
the above ranges the maximum difference between computations and experiment does not exceed 
10%. The effect of surface curvature is also clearly observed: cooling efficiency on 
convex surface (curve i) is less than that on concave surface (curve 2) when m > 1 and more 
when m < I. The expressions obtained here, which are valid near the nozzle, are an addition 
to Kutateladze-Leont'ev relation that agrees best with experimental data when x/(ms) > 60 
[i]. Since the extent of the initial segment in the wall jets is less than that of free 
jets, it was assumed in computations that the parameters in the initial segment of wall jet 
along curvilinear surface were identical to the characteristics of the initial segment of 
wall jet on a plate plate. 
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